对数收益率法对数收益率
今天本站就给我们广大朋友来聊聊对数收益率,以下关于对数收益率法的观点希望能帮助到您找到想要的财经。
- 1、关于使用matlab求对数收益率的问题
- 2、资产评估中,收益法中的收益额是指
- 3、"由一个具有常数有限无条件均值和方差的平稳随机过程产生的"
本文提供以下相关文章,点击可跳转详情内容,欢迎阅读!
关于使用matlab求对数收益率的问题
最佳答案用matlab算股票价格的收益率的方法:
在matlab里面通常指令是:log(Xt/Xt-1)。
其中Xt是某股票或某指数第t天的价格;
其中Xt-1是某股票或某指数第t-1天的价格.
股票收益率简介:
股票收益率指投资于股票所获得的收益总额与原始投资额的比率。股票得到投资者的青睐,是因为购买股票所带来的收益。股票的绝对收益率就是股息,相对收益就是股票收益率。
资产评估中,收益法中的收益额是指
最佳答案收益额是指由被评估资产在使用过程中产生的超出其自身价值的溢余额。
1、收益额指的是资产使用带来的未来收益期望值(评估基准日以后),是通过预测分析获得的。
2、收益额必须是由被评估资产直接形成的,不是由该项资产形成的收益应分离出来,切莫张冠李戴。
用于资产评估的收益是资产的客观收益(正常收益),而不是资产的实际收益。
收益额的构成:
第一,税后利润,即净利润。
第二,现金流量。
第三,利润总额。
选择哪一种作为收益额,评估人员应根据所评估资产的类型、特点以及评估目的决定,重要地是科学反映资产收益,并与折现率或资本化率口径保持一致。
以绝对数表示的资产价值的增值量,称为资产的收益额;资产的收益额通常来源于两个部分:一是一定期限内资产的现金净收入;二是期末资产的价值(或市场价格)相对于期初价值(或市场价格)的升值。前者多为利息、红利或股息收益,后者则称为资本利得。
单期资产收益率=资产的收益额/期初资产的价值(价格)=(利息或股息收益+资本利得)/期初资产的价值(价格)=利息收益率或股息收益率+资本利得收益率。
"由一个具有常数有限无条件均值和方差的平稳随机过程产生的"
最佳答案(1)式给出的均值方程是一个带有误差项的外生变量的函数。由于是以前面信息为基础的一期向前预测方差,所以称为条件均值方程。
(2)式给出的方程中: 为常数项, (ARCH项)为用均值方程的残差平方的滞后项, (GARCH项)为上一期的预测方差。此方程又称条件方差方程,说明时间序列条件方差的变化特征。
通过以下六步进行求解:
本文选取哈飞股份2009年全年的股票日收盘价,采用Eviews 6.0的GARCH工具预测股票收益率波动率。具体计算过程如下:
第一步:计算日对数收益率并对样本的日收益率进行基本统计分析,结果如图1和图2。
日收益率采用JP摩根集团的对数收益率概念,计算如下:
其中Si,Si-1分别为第i日和第i-1日股票收盘价。
图1 日收益率的JB统计图
对图1日收益率的JB统计图进行分析可知:
(1)标准正态分布的K值为3,而该股票的收益率曲线表现出微量峰度(Kurtosis=3.gt;3),分布的凸起程度大于正态分布,说明存在着较为明显的“尖峰厚尾”形态;
(2)偏度值与0有一定的差别,序列分布有长的左拖尾,拒绝均值为零的原假设,不属于正态分布的特征;
(3)该股票的收益率的JB统计量大于5%的显著性水平上的临界值5.99,所以可以拒绝其收益分布正态的假设,并初步认定其收益分布呈现“厚尾”特征。
分析证明,该股票收益率呈现出非正态的“尖峰厚尾”分布特征,因此利用GARCH模型来对波动率进行拟合具有合理性。
第二步:检验收益序列平稳性
在进行时间序列分析之前,必须先确定其平稳性。从图2日收益序列的路径图来看,有比较明显的大的波动,可以大致判断该序列是一个非平稳时间序列。这还需要严格的统计检验方法来验证,目前流行也是最为普遍应用的检验方法是单位根检验,鉴于ADF有更好的性能,故本文采用ADF方法检验序列的平稳性。
从表1可以看出,检验t统计量的绝对值均大于1%、5%和10%标准下的临界值的绝对值,因此,序列在1%的显著水平下拒绝原假设,不存在单位根,是平稳序列,所以利用GARCH(1,1)模型进行检验是有效的。
图2 日收益序列图
表1ADF单位根检验结果
第三步:检验收益序列相关性
收益序列的自相关函数ACF和偏自相关函数PACF以及Ljung-Box-Pierce Q检验的结果如表3(滞后阶数 =15)。从表4.3可以看出,在大部分时滞上,日收益率序列的自相关函数和偏自相关函数值都很小,均小于0.1,表明收益率序列并不具有自相关性,因此,不需要引入自相关性的描述部分。Ljung-Box-Pierce Q检验的结果也说明日收益率序列不存在明显的序列相关性。
表2自相关检验结果
第四步:建立波动性模型
由于哈飞股份收益率序列为平稳序列,且不存在自相关,根据结论,建立如下日收益率方程:
(3)
(4)
第五步:对收益率残差进行ARCH检验
平稳序列的条件方差可能是常数值,此时就不必建立GARCH模型。故在建模前应对收益率的残差序列εt进行ARCH检验,考察其是否存在条件异方差,收益序列残差ARCH检验结果如表3。可以发现,在滞后10阶时,ARCH检验的伴随概率小于显著性水平0.05,拒绝原假设,残差序列存在条件异方差。在条件异方差的理论中,滞后项太多的情况下,适宜采用GARCH(1,1)模型替代ARCH模型,这也说明了使用GARCH(1,1)模型的合理性。
表3日收益率残差ARCH检验结果
第六步:估计GARCH模型参数,并检验
建立GARCH(1,1)模型,并得到参数估计和检验结果如表4。其中,RESID(-1)^2表示GARCH模型中的参数α,GARCH(-1)表示GARCH模型中的参数β,根据约束条件α+βlt;1,有RESID(-1)^2+GARCH(-1)=0.95083<1,满足约束条件。同时模型中的AIC和SC值比较小,可以认为该模型较好地拟合了数据。
今天的内容先分享到这里了,读完本文《对数收益率法 对数收益率》之后,是否是您想找的答案呢?想要了解更多,敬请关注本站,您的关注是给小编最大的鼓励。